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Abstract: Double-diffusive stationary and oscillatory instabilities in a saturated porous layer of an elastico-viscous 

fluid heated and salted from below are investigated theoretically under the Darcy’s framework for a porous 

medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis and Walters’ 

(model B') fluid model is used to characterize the Viscoelastic fluid. A linear stability analysis based upon normal 

mode technique is used to find the critical value of Rayleigh number on the onset of stationary and oscillatory 

convection. The effects of Soret and Dufour parameters along with other physical parameters viz., Solutal 

Rayleigh numbers, Lewis number and that of permeability parameter on the stability of stationary convection are 

studied analytically and shown graphically. For stationary convection, the analysis reveals that the Walters’ 

(model B') elastico-viscous fluid behaves like an ordinary Newtonian fluid. The stable solute gradient have a 

stabilizing effect, Lewis number and permeability parameter has a destabilizing effect on the system whereas the 

Soret and Dufour parameters have destabilizing and stabilizing effects on the system. The analysis also shows that 

the stationary convection is followed by the oscillatory convection for Walters’ (model B') elastico-viscous fluid. In 

the limiting cases some important results have been recovered. 

Keywords: Double diffusive convection, Soret and Dufour effects, Walters’ (model B') fluid, Porous medium.  

1.   INTRODUCTION 

A succinct account of thermal instability for single component is given in the monograph by Chandrasekhar [1] and 

Drazin and Reid [2]. The destabilizing buoyancy force at some critical temperature gradients makes the fluid layer 

unstable resulting thermal convection. The convection driven by buoyancy that is contributed by two different diffusive 

components, namely, temperature and solutal concentration, with differing rates of diffusion is widely known as „„double 

diffusive convection‟‟ or „„thermosolutal convection‟‟. These phenomena of combined heat and mass transfers where both 

temperature and solute fields contribute to the buoyancy of the fluid have many applications in the behaviour of fluids in 

the crust of the earth, geophysics, metallurgy, material science and petroleum engineering. Excellent reviews of the 

literature on double – diffusive convection in porous media and its applications can be found in Nield and Bejan [3] .  

Since in a double diffusive system the fluid density depends on heat and solute concentration, it leads to a competition 

between thermal and compositional gradients. When two transport processes take place simultaneously, they interfere 

with each other, producing cross-diffusion effects (Soret and Dufour effects).The flux of concentration caused by 

temperature gradient and the flux of heat caused by concentration gradient are known as Soret and Dufour effects, 

respectively. These fluxes are mainly governed by convective phenomena of the liquid phase during processing. 

McDougall [4] observed that the spatiotemporal properties of convection in binary mixture show quite different trends 

from those of the double-diffusive systems without these cross diffusion effects. The contributions of Soret and Dufour 

coefficients are taken into account in the present analysis 

The major available literature   on the phenomena of double diffusive convection with or without cross diffusion effects 

are mainly concerned with Newtonian fluids in non porous medium but non-Newtonian fluids in porous medium have 
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gained tremendous interest of engineers and scientist in recent past, because of their important applications in various 

branches of science and technology. The fluids which exhibit both viscous and viscoelastic properties are called visco-

elastic fluid. The knowledge of viscoelastic fluids flow in porous media is useful in the recovery of crude oil efficiently 

from the pores of reservoir rocks by displacement with immiscible water. The study of viscoelastic fluids in a porous 

medium has attracted the attention of large number of researchers owing to their application in petroleum drilling, the 

extraction of energy from geothermal regions, manufacturing of foods and paper,agriculture product storage and in many 

chemical engineering systems. In view of the diverse physical structures of such fluids, an extensive range of 

mathematical models such as Oldroyd model, Rivlin-Ericksen model, Mexwell model, Johnson-Seagalman model and the 

Walter-B model has been developed with different constitutive relations to simulate the hydrodynamic behavior of these 

non-Newtonian fluids. An eloquent exposition of viscoelastic fluid models has been presented by Joseph [5]. Oldroyd [6] 

proposed and studied the constitutive relations for viscoelastic fluids in an attempt to explain the rheological behavior of 

some non Newtonian fluids. There are many elastico-viscous fluids that cannot be characterized by Oldroyd‟s  

constitutive relations or Maxwell‟s constitutive relations, one such class of fluid is Walter‟s (model B‟) fluids. Walters [7] 

has proposed a constitutive equation for such type of elastico–viscous fluids. Walters [8] deduced the governing equation 

for the boundary flow for a prototype viscoelastic fluid which they have designated as liquid Bwhen this liquid has a very 

short memory. Walter [8] reported that the mixture of polymethyl methacrylate and pyridine at 25 0 C containing 30.5 

grams of polymers per litre behaves very nearly as the Walters‟(modelB) viscoelastic fluid. A porous medium is a solid 

with holes in it, and is characterized by the manner in which the holes are imbedded, how they are interconnected and the 

description of their location, shape and interconnection. However, the flow of a fluid through a homogeneous and 

isotropic porous medium is governed by Darcy‟s law which states that the usual viscous term in the equations of motion 

of Walters‟ (modelB) fluid is replaced by the resistance term 
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is the medium permeability and q


 is the Darcian (filter) velocity of the fluid. 

Literature is replete with the various related convection problems considering variety of viscoelastic fluids (models). 

Sharma and Bhardwaj [9] have studies the problem of thermosolutal instability of an Oldroydian viscoelastic fluid in 

porous medium. Kumar et al. [10] studied the Rivlin-Ericksen elastico-viscous fluid by considering the effect of rotation 

and magnetic field. Wang and Tan [11] studied the stability analysis of a Soret-driven double-diffusive convection of 

Maxwell fluid in a porous medium using linear and non-linear stability analysis. The related thermal and thermosolutal 

instability problems in Walters‟ (Model B') elastico-viscous fluid in a porous medium  are studied by Sharma and 

Aggarwal [12], Rana and Sharma [13], Rana and Kumar [14], Gupta and Aggarwal [15]. Shivkumara et al. [16] studied 

the effect of thermal modulation on the onset of convection in Walters‟ (Model B') viscoelastic fluid in a porous medium. 

Recently, Dhiman and Goyal [17] studied the stability of Soret driven double-diffusive convection problem for the case of 

rigid, impervious and thermally perfectly conducting boundary conditions using variational principle. This class of fluids 

is used in the manufacture of parts of space cafts, aeroplane, tyres, beltconveyors, rops, cushions, foams, plastics, 

engineering equipments and has wide applications in paper and pulp technology, petroleum engineering, geophysics, soil 

sciences and chemical engineering. 

The problem of onset of convective motion in a double diffusive system of viscoelastic fluid particularly Walter‟(model 

B‟) fluid in porous medium in the presence of Soret and Dufour effects has received very scant attention in the literature. 

For a saturated porous media, the phenomenon of cross diffusion is further complicated due to interaction between fluid 

and porous matrix and non availability of exact values of these coefficients. In most of the studies that related to the 

problem referred above, it has been noticed that either the inuflence of Dufour or both Soret and Dufour effect are 

neglected on the basis first that they are of smaller order of magnitude in liquid mixtures (Mojtabi and Charrier-Mojtabi 

[18],Schechter et al [19]). The cross diffusion effects, however small they may be, are present in double diffusive 

convections and are equally important and they have a large influence on hydrodynamic stability relative to their 

contributions to the buoyancy of the fluid, hence cannot be easily discarded. 

keeping in mind the importance of cross diffusion effect and the growing importance of Walter‟(model B‟) fluids, the aim 

of present  work is to study the double- diffusive convection in a porous layer  of Walter‟(model B‟)elastic-viscous fluids 

in the presence of Soret and Dufour effects using  linear stability analysis . The effects of Soret and Dufour parameters 

along with other various physical parameters viz., Solutal Rayleigh numbers, Lewis number and permeability on the 

stability of stationary convection are studied analytically and shown graphically. 



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 3, Issue 2, pp: (37-47), Month: October 2015 - March 2016, Available at: www.researchpublish.com 

 

Page | 39 
Research Publish Journals 

 

2.   FORMULATION OF THE PROBLEM AND MATHEMATICAL ANALYSIS 

Let dtdxqpeT iiijijijij /,,,,,,,,,    denote respectively, the total stress tensor, the shear stress tensor, the rate-of-

strain tensor, the viscosity, the viscoelasticity, the isotropic pressure, the Kronecker delta, the velocity vector, the position 

vector and the convective derivative. Then the constitutive relation, which is proposed and studied by Walters‟ [8] 

describing the Walters‟ (model B') elastico-viscous fluid is  

 

  (1) 

 

 Here we consider an infinite, horizontal, incompressible Walter‟(model B‟) elastico-viscous fluid saturated porous layer, 

of thickness  d  confined between two parallel horizontal planes 0z  and dz    which are respectively maintained at 

uniform temperature T0 and T1 (T0> T1) and at uniform concentrations C0 and C1 (C0> C1).The layer of fluid mixture is 

heated and salted from below in the the force field of gravity ),0,0( gg 


. A uniform adverse temperature gradient 

 dzdT and a uniform concentration gradient  dzdC are maintained. The fluid layer is assumed to be flowing 

through an isotropic and homogeneous porous medium of porosity  and the permeability 1k . The Oberbeck–Boussinesq 

approximation [20] is assumed to be hold, which states that the variation in density is negligible everywhere except in its 

association with the external force.  

Utilizing the constitutive relation (1),which is proposed and studied by Walters‟ [8] and following De Groot and Mazur 

[21], McDougall [4], Sharma et.al [9],  the basic equations that govern the problem under consideration are expressed as 
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Where ),,( wvuui  is the Darcy velocity ; p is the pressure,   is the coefficient of viscosity and 0   is the 

coefficient of kinematic viscosity;   is gravity; 12D is the Dufour coefficient; 21D is the Soret  coefficient; T is the 

temperature, C concentration,  is the thermal conductivity and    is the solutal diffusivity, E is thermal capacity ratio; 

fpmp ccE )()(  ,where fpc )( is the volumetric heat capacity of the fluid; E is constant analogous to E but 

corresponding to solute rather than heat and 
spfpmp ccc ))(1()()(   is the volumetric heat capacity of the 

saturated medium as a whole, with the subscripts f, s and m denoting the properties of the fluid, solid, and porous matrix, 

respectively;   and    are respectively denote the thermal and concentration expansion coefficient,   is the density.  

2.1 Basic State and its Solutions: 

The initial stationary state of the system is taken to be a quiescent layer whose stability we want to examine is 

characterized by, 
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Using equation (7), equations (2) to (6) yield the following stationary solution 
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where,  00 ,p  are the values of ,p  at z = 0. 

2.2 The Perturbation Equations: 

Let the initial state described by (7) be slightly perturbed so that perturbed state is given by 

 

    
ppp

CCTTCC

TTwvuq

b

bbb

b













000 1,

,0,0,0


                                                   (9) 

Where  ,,,),,,( pwvu  denote respectively the perturbations in velocity (0,0,0),density , pressure p, temperature 

T, solute concentration C. The change in density 
 

caused by perturbation  and in temperature and solute 

concentration is given by    )(0     

Then the linearized perturbation equations relavant to the problem are given by  
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2.3 Normal Mode and Stability Analysis: 

Analyze an arbitrary perturbation into a complete set of normal modes and assume that the perturbed quantities are of the 

form 
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Where 
22

yx kka   is the resultant wave member of the perturbation, kx and kyare wave numbers along x and y 

directions respectively and n is the time constant (which is complex in general). Using equation (14), the linearized 

perturbation equations (10)–(13) within the framework of Boussinesq approximations, in the non-dimensional form 

becomes  
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together with the boundary conditions  
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Where         denotes the derivative operator; rP
 

is the thermal Prandtl number; rc PS   is the Schamidt 

number;
2

1 dkPl  is permeability parameter;
2dF  is the viscoelastic parameter;   is the Lewis 

number;  4dgR 

 

is the thermal Rayleigh number;   4dgR  is thesolutal Rayleigh number; 

  12DD f is the Dufour parameter;   21DST  is the Soret parameter. We have put the coordinates x,y,z 

in the new unit of length d and D = d/dz. Also we have used 
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In the resulting equations omitting the asterisks for simplicity in writing.The system of equations (15)-(17) together with 

boundary conditions (18) constitutes an eigenvalue problem for   that govern thermosolutal convection in porous layer 

of Walters‟ (model B') viscoelastic fluid in the presence of Soret and Dufour effect for dynamically free boundaries.  

We assume that the approperiate solution to 
,,W

 that satisfies the boundary conditions (18) and characterizing the 

lowest mode is  
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Substituting this solution in equation (15)-(17) and integrating each equation by parts within the range of z, we get the 

following matrix equation 
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This matrix equation has a non zero solution implies that determinant of the coefficient matrix is equal to zero which 

requires that
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The growth rate ir i   is, in general, a complex quantity such that the given state of the system is stable, neutral 

or unstable according as; ,0r  0r   or ,0r  for all wave numbers 
2a . We are interested in the marginal 

stability analysis and in that case 0r  and it is apparent that the marginal state ( 0r ) occurs with two cases 

0i and 0i  When 0i then the marginal state is characterized by the stationary convection and when 0i  

then the instabilities are characterized by a marginally oscillatory mode and the instability sets in as oscillatory convection 

of growing amplitude, known as „overstability‟. we now discuss stationary and oscillatory modes of instability using the 

dispersion relation (21). 
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2.4 Stationary convection:    

For stationary convection putting  0  in the equation (21), we get 
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Here the viscoelasticity parameter F vanishes with 0  implying that for a stationary convection, the Walters‟ (model 

B') elastico-viscous fluid behaves like an ordinary Newtonian fluid. Hence the effects of cross-diffusive parameters on the 

stationary convection of a viscoelastic fluid model behave like its effects on Newtonian fluid.

 
The critical stationary Rayleigh number cR  occurs when 
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Which is identical with the result reported by Motsa [22]  (when lP =1). In  the absence of Soret and Dufour effects

0 Tf SD , the stationary Rayleigh number given by Equation (22). reduces to 
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which is the classical result (when lP =1) for the double-diffusive convection in a Darcy porous medium ( Nield and 
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Further, for single component fluid when  0 RSD Tf
, the stationary Rayleigh numbers is given by equation 
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Which  coincides with the results (when lP =1) obtained by (Horton and Rogers[23] ; Lapwood[24];   Nield [25] and 

Chandarasekher [1] ).  

2.4 Oscillatory Convection: 

For oscillatory convection at the marginal state,  putting ii  , (where 0i  real and is the frequency of oscillation) 

in equation (22) which reduces to 
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Since the Rayleigh number R is a physical quantity so it must be real hence the imaginary part of
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It gives the frequency of oscillations. As 
2

i the square of the frequency of the periodic convection is always real 

positive, therefore the condition for which the relation (28) gives real positive 
2

i r oscillatory 

convection. Now the equation (27) on putting 02   reduces to 1R  
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  (29) 

which establishes the oscillatory Rayleigh number and clearly it depends on the cross-diffusive terms along with the other 

parameters of the fluid. Since the oscillatory Rayleigh obtained above varies simultaneously with 
2

i and 
2a  therefore, it 

is not possible to find the critical value of oscillatory Rayleigh number analytically. For this, the expression for oscillatory 

Rayleigh number R given by equation (29) after substituting for 
2

i from equation(28), is minimized with respect to the 

wave number numerically, for the chosen values of  other parameters. 

3.   RESULTS AND DISCUSSIONS 

The onset of double diffusive convection in a porous layer of an elasticoviscous fluid (Walter-B liquid) heated and salted 

from below in the presence of Soret and Dufour effect ( 0,0  Tf SD ) is examined analytically and graphically. To 

investigate the effects of  Dufour parameter, Soret parameter, solute gradient,  medium permeability and that of Lewis 

number (all positive) on the onset of stationary convection in the double diffusive system. we examine the  behavior of 
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Which yields that Dufour parameter has stabilizing effect on the onset of stationary convection double diffusive system 

for 
fD ,( 10  TS ).
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Thus the Soret parameter has both stabilizing effect and destabilizing effect on the onset of stationary modes according as  
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which implies that for stationary convection, the solutal Rayleigh number has  stabilizing as well as destabilizing effect 

according as fD  or fD and ( 10  TS ), on the system.  
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which yield that the pereamebility parameter has destabilizing effect on the onset of stationary convection for  

10  TS  and 
fD  

(v)   0
)(

)(

)1(
2

222

2





















R

Pa

a
D

D

SR

l

f

f

T 


      

for  10  TS  and 
fD   

which implies that the Lewis number  has destabilizing effect on the system for  10  TS  and 
fD   

To have better insight of the physical problem, the variation of stationary or oscillatory Rayleigh number with square of 

wave number are evaluated numerically for some fixed typical values of governing parameters except for one of the 

varying parameter occuring in the problem. The convection curves for these parameters in (R-a)plane for different values 

of one of the  parameter are shown in fig.1-8 

 

Fig 1: Variation of Stationary Rayleigh number R with wave number ‘a’ for fixed values of

2,50,002.0,01.  lf PRD  for different values of Soret number TS  

 

Fig 2: Variation of stationary Rayleigh number R with wave number ‘a’ for fixed values of

2,50,03.0,01.  lT PRS  for different values of Dufour number
fD  
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Fig 3: Variation of stationary Rayleigh number R with wave number ‘a’ for fixed values of

002.0,2,50,03.0  flT DPRS  for different values of Lewis number 

 

Fig 4: Variation of oscillatory Rayleigh number R with wave number ‘a’ for fixed values of 

2,002.0,09.0,01.  lfT PDS for different values of solutal Rayleigh number   

 

Fig 5: Variation of oscillatory Rayleigh number R with wave number ‘a’ for fixed values of

50,002.0,03.0,01.  RDS fT  for different values of Permeability number 
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Fig 6: Variation of Stationary and oscillatory Rayleigh number R with wave number ‘a’ for fixed values of

2,2,3,002.,03.0,01.  lifT PRDS   

4.   CONCLUSIONS 

In the present paper, the onset of double diffusive convection in a saturated porous layer of Walter (model B)  elastico 

viscous fluid in the presence of Soret and Dufour effect is examined analytically and graphically by means of linear 

stability analysis. Our investigation leads to the following conclusions:  

i. For the stationary convection, Walter (model B) elastic viscous fluid behaves like an ordinary Newtonian fluid due to 

the vanishing of the viscoelastic parameter.  

ii. It has been found that in the presence of both Soret and Dufour effects( 0,0  Tf SD )  The Dufour parameter has 

stabilizing effect whereas the Soret parameter has both stabilizing and destabilizing effect on the onset of stationary 

modes according as  fD  or fD  . Figures (1)-(2) support the analytical results graphically. 

iii. The Lewis number  has destabilizing effect on the onset of stationary convection whereas the solutal Rayleigh 

number has both stabilizing and destabilizing effect according as fD  or fD Figures (3) and (4) depict these 

effects graphically. 

iv. The permeability parameter lP  has destabilizing effect on the onset of stationary convection in the system if 

10  TS  and 
fD  . Figure (5) support this effect graphically. 

v. It is found numerically that the critical Rayleigh number for oscillatory convection is far less than that for the 

stationary convection showing that the oscillatory convection sets in much earlier than stationary convection for the 

chosen values of the other parameters. 

Finally, it is observed that the numerical results are in close agreement with the analytical results.  
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